Исследование конечной жесткости соединений металлических конструкций

Общий расчет столбчатого фундамента

Выполнение расчета фундаментной конструкции основано на определении суммарной площади сечения всех опорных столбов фундамента (S). Она определяется как отношение общей массы здания (Р) к расчетному сопротивлению грунта (Ro) по формуле:

S = 1.4 x P/Ro, где 1,4 — это коэффициент запаса прочности.

При составлении предварительной схемы расположения фундаментных столбов была определена их расстановка и минимально возможное количество. Поэтому, разделив общую площадь сечения на число опор, можно получить размеры сечения каждого отдельного столбчатого фундамента под колонну.

Если размер колонн получился менее 400 мм, то следует принять этот минимальный размер. При необходимом сечении столбов более 600 мм, требуется увеличить их количество на схеме, изменяя расстояния между опорами на прямых участках таким образом, чтобы весовая нагрузка распределялась более равномерно.

Минимальная площадь опорной подушки должна превышать сечение столба в полтора раза при толщине 400 мм.

Подошва столба изготавливается из железобетона в опалубке с обязательным двухрядным армированием и подстилающим слоем из щебня толщиной не менее 100 мм.

Опирающаяся плоскость нижней части опоры должна находиться на 30-40 см глубже уровня промерзания грунта.

Карта глубин промерзания грунта в России.

Бесплатные строительные онлайн калькуляторы и расчеты

Прежде чем приступить к непосредственному строительству, необходимо провести расчеты характеристик и расходов строительных материалов для той или иной конструкции. Этот этап позволит избежать разрушений постройки, деформации ее элементов и прочих негативных факторов. Помимо этого, от качества произведенных расчетов зависит и быстрота проведения строительных работ, так как нехватка какого- либо материала способна затормозить дело, причем затормозить на неопределенный срок, в связи с тем, что дополнительный материал, в разгар строительного сезона, найти очень не просто.

Для вашего удобства и оперативной подготовки всего необходимого представлен специальный сайт строительных калькуляторов, с помощью которого легко избежать проблем с предварительной закупкой материалов и, соответственно, последующей нехваткой последних.

Онлайн калькулятор поможет произвести следующие расчеты:

  • Расход материалов, необходимых для возведения всех основных элементов постройки;
  • Расчет необходимых размеров и параметров элементов;
  • Расчет требуемых характеристик строительных материалов.

Многофункциональность онлайн сервиса является несомненным достоинством сайта. Строительный онлайн калькулятор позволяет производить огромное количество всевозможных строительных расчетов, не выходя из дома. Причем расчеты могут быть не только технического характера, но и экономического, что играет положительную роль на подготовительном этапе строительных работ.

Начало работы с онлайн калькулятором

Для начала работы требуется выбрать из списка необходимый раздел, находящийся в левой части экрана. Для каждой калькуляции необходимо вводить требуемые показатели и данные, такие как размеры предполагаемой постройки, требуемые характеристики прочности, район расположения и так далее. Большинство расчетов предполагает несколько направлений, то есть помимо основного расчета строительных материалов, возможно, попутно вычислить и размер конструкции. Каждый расчет снабжен дополнительными справочными материалами, а также иллюстративно подкреплен удобным чертежом.

Некоторые расчеты позволяют вычислить и экономическую составляющую предполагаемых работ, к примеру, указав стоимость одной единицы материала, калькулятор сосчитает общую стоимость всего необходимого количества. Расчет дополнительных показателей производится при отмеченной галочке напротив интересующего пункта. Результат подсчета моментально появляется на экране после нажатия клавиши «Рассчитать». Внизу результата удобно расположена кнопка «Распечатать».

Строительный калькулятор, или положительные моменты его использования

Представленные на сайте калькуляторы до минимума сокращают задачу длительных подсчетов, что существенно экономит время.

Каждый раздел и подраздел сайта позволяет:

  • Выбрать предполагаемые виды работ;
  • Рассчитать необходимые затраты и количество требуемого материала для проведения работ;
  • Ознакомиться с подробным чертежом;
  • Вычислить общую сумму, необходимую для покупки строительных материалов;
  • Ознакомиться со справочными материалами и рекомендациями;
  • Распечатать результат подсчетов;
  • специалисту.

Все без исключения подобные калькуляторы подразумевают небольшую погрешность. В связи с этим, предварительные подсчеты необходимо согласовывать со специалистами в данной области или же проверять ими уже проведенные расчеты.

Сайт находится в стадии доработки. Ведется постоянная разработка новых калькуляторов и расчетов. Обо всех найденных ошибках просьба сообщать по обратной связи.

Расчет и конструирование баз — Базы колонн — Колонны

Расчет опорной плиты и траверсы центрально сжатой колонны

Размеры опорной плиты центрально сжатой колонны определяются по расчетному сопротивлению бетона фундамента осевому сжатию R6 (принимаемому равным 44 кг/см2 для бетона марки 100). Минимальная площадь плиты определяется по формуле

где N — расчетное усилие в колонне.

Найдя необходимую площадь плиты, переходят к конструированию башмака, назначая ширину плиты В несколько больше ширины колонны.

Плита работает на изгиб от равномерно распределенной нагрузки (отпорного давления фундамента)

причем различные участки плиты будут находиться в разных условиях изгиба. На фигуре показана плита, на которой могут быть выделены три различных участка.

К расчету опорной плиты центрально сжатой колонны

Первый участок плиты 1 работает и рассчитывается как консоль. Для этого выделяют полосу шириной 1 см и подсчитывают момент в сечении I — I:

Момент сопротивления плиты толщиной 8 и шириной 1 см будет равен

Плита должна иметь достаточную толщину, чтобы равномерно передавать нагрузку на бетон, не прогибаясь при этом (как показано в преувеличенном виде), т. е. башмак должен работать как жесткий штамп.

Используя полное напряжение в плите, равное расчетному сопротивлению, можно записать условно

откуда связь между толщиной плиты и вылетом консоли получается в следующем виде:

Второй участок плиты 2 работает как плита, опертая по четырем сторонам и нагруженная снизу той же равномерно распределенной нагрузкой q = σб. Расчет такой прямоугольной плиты, у которой максимальный момент действует в ее центре, производится при помощи таблиц, составленных акад. Б. Г. Галеркиным, по формулам

Здесь Ма и Мb — моменты, вычисленные для полос шириной 1 см в направлении размеров а и b; α — длина короткой стороны прямоугольника; α1 и α2 — коэффициенты, принимаемые по таблице в зависимости от отношения стороны b (более длинной стороны) к α.

В случае, если — b/a > 2, определение момента может быть произведено для полосы, вырезанной вдоль короткой стороны, как в однопролетной балке (смотрите таблицу ниже, последний столбец).

В предположении упругого защемления краев плиты можно полученные по формуле (34.VIII) или как в однопролетной балке моменты уменьшить на 25%.

Третий участок плиты 3 работает как плита, опертая по трем сторонам. Наиболее опасным местом такой плиты является середина ее свободного края. Момент в этом сечении определяется по формуле

где α3 — коэффициент, принимаемый по таблице;

d1 — длина свободного края плиты.

В случае, если a1/d1 < 0,5, плита проверяется как консоль.

Определение толщины плиты производится по необходимому моменту сопротивления плиты

откуда

При конструировании базы следует стремиться к тому, чтобы толщины на различных участках плиты, определяемые по формулам (33.VIII) и (36.VIII), были близкими друг к другу. Этого можно достичь, изменяя размеры a, b и с. Так, например, на фигуре, в путем постановки диафрагмы, участок 3 (внизу) разбивается на два: на участок 4, опертый по четырем сторонам, и на участок 5, опертый по трем сторонам, но с меньшим размером а1.

Таблица Коэффициенты α1, α2 и α3 для расчета на изгиб прямоугольных плит, опертых по четырем и трем сторонам.

Обычно толщину опорной плиты принимают в пределах 16 — 40 мм (кроме плит колонн с фрезерованными торцами, где толщина может быть больше).

Высота траверсы определяется из условия размещения сварных швов, через которые усилия со стержня колонны передаются на траверсу.

«Проектирование стальных конструкций»,К.К.Муханов

Башмак внецентренно сжатой колонны оказывает неравномерное давление на поверхность фундамента. В направлении действия момента плита башмака оказывает на фундамент сжимающее действие, а с противоположной стороны стремится оторваться от поверхности фундамента. Схема к расчету анкерных болтов Этому отрыву препятствуют анкерные болты, осуществляющие защемление колонны. При конструировании первоначально задаются шириной плиты базы В. Длина плиты определяется из…

Конструирование и расчет базы колонны

База колонны с фрезерованным торцом

Для изготовления фундамента принимаем бетон класса B22,5.

При фрезерованном торце стержня колонны плиту принимаем квадратной со стороной:

, где

— расчетное сопротивление бетона смятию, где

— коэффициент, зависящий от класса бетона;

— призменная прочность бетона;

;

Принимаем .

Принимаем размеры опорной плиты:

; .

Фактическая площадь опорной плиты:

Опорная плита колонны

Изгибающие моменты в консолях:

;

, где

,

— площади расчетных консолей;

,

— расстояния от центра тяжести трапеции до габарита сечения колонны;

— фактическое напряжение в фундаменте.

Максимальный момент в опорной плите:

.

Определяем толщину плиты из условия прочности:

;

По конструктивным требованиям принимаем: .

Принимаем полуавтоматическую сварку.

Требуемый катет углового шва по металлу шва:

;

Требуемый катет углового шва по границе сплавления:

, где

— коэффициенты, учитывающие глубину провара;

— коэффициенты условий работы шва;

— расчетное сопротивление угловых швов условному срезу по металлу шва

— расчетное сопротивление угловых швов условному срезу по металлу границы сплавления, где

— временное сопротивление стали разрыву;

Принимаем катет шва: .

Расчет анкерных болтов

Расчет анкерных болтов, прикрепляющих опорную плиту к фундаменту, производим на усилия: кН; кН∙м из таблицы усилий и напряжений.

;

;

см.

Усилие в анкерных болтах:

кН.

Принимаем болты из стали 09Г2С-6 по ГОСТ 19281-73*. Расчетное сопротивление срезу таких болтов, согласно Rba = 22,5 кН/см2.

Требуемая площадь болта:

см2.

Исходя из конструктивных требований принимаем 4 болта диаметром 36 мм.

Площадь одного болта см2.

Железобетонные колонны и их особенности

Сборные железобетонные колонны изготавливают, используя армированный бетон, и придавая изделиям вертикальную форму. Как правило, их применяют для сооружения каркаса. Колонна состоит из трех элементов:

  1. Оголовок – принимает массу вышестоящей конструкции.
  2. Стержень – передает нагрузку к нижней части.
  3. База – равномерно разделяет давление и нагрузку.

Производство ЖБ колонн осуществляется из железобетона, отсюда и название этих опорных элементов. Выделяют колонны, сжатые:

  • центрально, когда конструкции принимают осевую нагрузку;
  • внецентренно, когда конструкции принимают еще и изгиб.

Центрально сжатые реализовывают поддерживающую функцию, поэтому используются там, где действует только вертикальная нагрузка. В местах, где присутствует и осевая нагрузка, используются внецентренно сжатые изделия.

Расчет элементов металлических конструкций

Расчет элементов металлических конструкций выполняется по нормам СНиП II.23-81*, СП 16.13330.2011, СНиП 2.01.07-85, Eurocode 3.1.1 ENV 1993-1-1:1992, LRFD (AISC) 2nd edition, ДБН В.2.6-198:2014

Возможен расчет элементов металлических конструкций следующих поперечных сечений:

  • двутавры прокатные, двутавры сварные, тавры прокатные,
  • уголки прокатные, сечения из пар прокатных уголков,
  • швеллеры прокатные, швеллеры сварные,
  • С-образные сечения, двойные швеллеры,
  • замкнутые сечения,
  • сквозные сечения,
  • полнотелые сечения и канаты

Все элементы металлических конструкций для расчета подразделяются на типы: колонны, балки, фермы и канаты. Колонны учитывают в расчете осевое усилие, изгибающие моменты и поперечные силы: N, My, Qz, Mz, Qy; балки – изгибающие моменты и поперечные силы: My, Qz, Mz, Qy; фермы – только осевое усилие N; канаты – только растягивающее осевое усилие N+. Это позволяет выполнять следующие расчеты:

  • расчет несущей способности балок как изгибаемых элементов;
  • расчет несущей способности ригелей как сжато-изгибаемых и растянуто-изгибаемых элементов;
  • расчет несущей способности и колонн как внецентренно-сжатых и внецентренно-растянутых элементов, а также как центрально-сжатых и центрально-растянутых элементов
  • расчет несущей способности ферм как центрально-сжатых и центрально-растянутых элементов;

Расчет несущей способности элементов металлических конструкций подразумевает получение следующих результатов:

  • расчет на прочность, в том числе на разрыв, срез, по нормальным, касательным, приведенным (октаэдрическим) напряжениям
  • расчет на устойчивость изгибаемых, центрально- и внецентренно-сжатых элементов, в том числе при действии момента в двух плоскостях
  • расчет по прогибу изгибаемых элементов
  • расчет по предельной гибкости сжатых и растянутых элементов

СТК-САПР

Расчет металлической колонны относительно оси Y-Y

Определяем расстояние между ветвями колонны из условия равноустойчивости:

λпр = λх

где, λпр — приведенная гибкость относительно оси Y-Y;  λх — гибкость относительно оси Х-Х.

Задаемся гибкостью ветви на участке между планками от 30 до 40. Для рядовых планок равна:

ls = (0.5…0.8)b

где b — ширина сечения сквозной колонны;

Концевые планки принимаются длиной, равной примерно 1,5ls.

Толщина планок назначается из конструктивны условий ts = (1/10…1/25) ls в пределах 6…12 мм. Рис. 2

Рис. 2 Схема расположения планок в колонне

Ширина сечения сквозной колонны равна:

b ≥ 2*bшв + a

где bшв — ширина пояса швеллера, а — 100…150 мм из конструктивных соображений.

b ≥ 2*95 + 100 ≈ 300 мм

Тогда

ls = 0.7*b = 0.7*300 ≈ 200 мм, ts = 8 мм.

Максимальное расстояние между планками l определяется по принятой гибкости λ1:

l0 = λ1 * i1

где  λ1 = 30 — гибкость на участке между планками; i = 2,73 см — радиус инерции швеллера №27, i1 = iy;

l = 30*2.73 = 82 см

Тогда, расчетная длина ветви равна:

lв = l + ls

lв = 82+20 = 102 см

Значение lв принимаем кратным высоте колонны.

Вычисляем соотношение:

где Jпл — момент инерции площади поперечного сечения планки;

J1 = 262 см4 — момент инерции сечения швеллера №27;

J1 = Jy

Вычисляем гибкость стержня колонны λy. При n > 5 имеем:

В колоннах с раскосной решеткой (рис.3) имеем:

где  — коэф., зависящий от угла наклона раскоса;

A – площадь сечения всего стержня колонны;
Ap – площадь сечения раскосов в двух плоскостях.

Рис. 3 Схема узла раскосной решетки

При n < 5 имеем:

При λ1 = 30 — гибкость ветви (задаем в пределах 30…40);

n — соотношение жесткостей;

γ1 — угол перекоса;

Угол перекоса γ1 определяем по формуле:

где Δp —  удлинение раскоса (Рис.3).

При λy определяется радиус инерции сечения стержня колонны

где Jy — момент инерции сечения стержня колонны;

Требуемая ширина сечения равна:

Полученное значение меньше b = 300 мм, следовательно, принимаем b = 30 см.

Определяем гибкость стержня колонны относительно свободной оси:

Тогда получаем:

Если λпр = λх, то напряжение можно не проверять, колонна устойчива в двух плоскостях.

Если значение λпр отличается от λх, то необходима проверка устойчивости стержня колонны по формуле:

где φy — коэф. принимаем по табл.2 в зависимости от λy.

Расчет металлической колонны

Отправьте заявку на изготовление металлических колонн к нам на почту или позвоните по телефону +7(495)118-36-14.

При заказе продукции в нашей компании наши клиенты получают следующие преимущества:

  • гибкая ценовая политика;
  • выполнение срока, указанного в договоре;
  • доставка конструкции;
  • гарантия качества.

Наименование металлоконструкций Цена
Каркасы зданий и сооружений из металлоконструкций от 80000 руб. т.
Мостовые металлоконструкции и пешеходные переходы от 102000 руб. т.
Фасадные металлоконструкции, фахверки от 82000 руб. т.
Колонны с различными сечениями и параметрами от 82800 руб. т.
Фермы от 81800 руб. т.
Сварная балка от 81800 руб. т.
Подкрановая балка, балки перекрытий от 84800 руб. т.
Металлоконструкции эстакад от 84800 руб. т.
Опоры трубопроводов от 84800 руб. т.
Кабельные конструкции от 83800 руб. т.
Лестницы, косоуры, ограждения от 92800 руб. т.
Высотные конструкции, мачты, порталы от 92800 руб. т.
Емкости и резервуары от 96800 руб. т.
Металлические навесы от 84800 руб. т.
Анкерные группы от 92000 руб. т.
Закладные детали от 75000 руб. т.

Пошаговая инструкция проведения расчета

1.Вводят тип проката: круглый, квадратный, в форме полосы, шестигранника и т.д.

2.Указывают разновидность схемы, по которой крепится стойка: в виде заделки консоли, в виде заделки заделки, в виде заделка шарнир, либо шарнир шарнир.

3.Выбирают материал проката, к примеру: из Стали С235 — Ст3кп2, из Стали С245 — Ст3пс5 либо Ст3сп5.

4.Устанавливают разновидность стойки, ее назначение, к примеру: стойки передающие, служащие для опоры, основные либо второстепенные.

Важно! При отсутствии типа материала в таблице, а показатель его расчетного сопротивления (кг /см 2) известен, значит, следует ввести значение в специальное поле. Чтобы произвести расчет вводят:

Чтобы произвести расчет вводят:

1.Длину стойки — L, выражают в метрах.

2.Размер D либо Dv, либо A, выражают в миллиметрах.

3.Размер B, выражают в миллиметрах.

4.Нагрузку на колонну — P, выражают в килограммах.

По последней версии СНиПа II – 23 – 81 проводя расчет прочности стальных деталей, оснащенных центральным растяжением либо сжатием посредством силы Р вычисляют при помощи следующей формулы:

P : Fp Х Ry Х Yc

Расчет на устойчивость детали, имеющей сплошное сечение с центральным сжатием силой Р вычисляют согласно формуле:

P : Fi х Fp х Ry х Yс

В формуле:

1.Fi – значение коэффициента, указывающий на продольный изгиб, элементов центрально – сжатого типа.

Данный коэффициент компенсирует небольшую не прямолинейность стойки, нехватку крепежной жесткости, также неточность определения нагрузки вдоль двух осей колонны.

Параметр Fi отличается в зависимости от марки стального материла его гибкости, как правило, значение определяют по таблице No 72 из СНиПа II-23-81 за 1990 год, зависит также от показателя сопротивления материала, сжатию при расчете, изгиба и растяжения.

Данное условие делает расчет более простым, но более грубым, потому что в СНиП указаны инженерные формулы, по которым рассчитывают Fi.

Физическая величина – гибкость стойки, по-другому Lambda, определяющая параметры стойки, которые значение длины, поперечное сечение, в том числе значение инерционного радиуса.

LAMBDA = Lr : i

В формуле:

Lr – значение расчётной стержневой длины.

i – значение инерционного радиуса стержневого диаметра поперечного типа.

Данная величина, обозначаемая i вычисляется, как корень квадратный из значения I : Fp, в котором I равен моменту инерции, а Fp равно площади сечения.

Lr=Mu * L,

В формуле:

Mu – коэффициент, определяемый крепежной схемой колонны.

L – значение длины стойки.

Важно! Если у прямоугольника, имеющего два радиуса инерции сечения, вычисляют Lambda, использовать следует наименьший из них. Гибкость стойки, которую рассчитывают по вышеуказанной схеме, не может быть выше значения 220 согласно таблице No 19 по СНиПу II – 23 – 81, в нем указаны максимальные показатели предельной гибкости стоек центрально-сжатого типа

Гибкость стойки, которую рассчитывают по вышеуказанной схеме, не может быть выше значения 220 согласно таблице No 19 по СНиПу II – 23 – 81, в нем указаны максимальные показатели предельной гибкости стоек центрально-сжатого типа.

Чтобы их правильно применять, следует в калькуляторе выбрать таблицу с названием Вид и назначение стоек, далее определить подвид.

Значение предельной гибкости определяется параметрами геометрических фигур, на величину влияет изгиб продольный, нагрузка, расчетное сопротивление материала изделия, рабочие условия.

Перед тем, как начать работать в калькуляторе онлайн, следует тщательно изучить инструкцию.

Жесткость — ригель

Жесткость ригеля обычно в несколько раз превышает жесткость колонны, поэтому может рассматриваться как бесконечно большая. В таких случаях требуется учитывать упругую податливость узлов сопряжения ригелей с колоннами и определять расчетные длины / о Д пользуясь формулами норм проектирования.

С увеличением жесткости ригелей критическая сила возрастает.

При определении жесткостей ригелей рамных конструкций плиты покрытий и перекрытий вводятся в расчет независимо от соотношения между толщиной плиты и высотой поперечного сечения ригеля. За расчетную ширину полки таврового сечения принимается расстояние между осями примыкающих к ригелю пролетов.

В металлических каркасах промышленных зданий жесткость ригелей обычно сильно превосходит жесткость колонн. Отношение жесткостей часто бывает таким, что оно допускает при расчете системы без большой погрешности считать ригели бесконечно жесткими. При таком допущении расчет системы сильно упрощается. В этом случае сохраняются лишь некоторые операции предыдущего примера расчета.

Приведение заданной рамы к эквивалентной полураме.| Эпюра моментов от смещения ригеля эквивалентной полурамы.

Пролет ригеля не назначают, так как в дальнейших расчетах фигурирует но-гонная жесткость ригеля полурамы, который одним концом жестко связан со стойкой, а на втором конце имеет горизонтально подвижную вертикальную опору.

Здесь при перемножении эпюр для ригеля введен множитель — -, так как жесткость ригеля в три раза больше жесткости стойки.

Свободная длина стойки в плоскости и из плоскости рамы колеблется от 0 7 h до 2h в зависимости от расположения связей и жесткости ригеля рамы.

Обе колонны работают в одинаковых условиях и могут одновременно потерять устойчивость. Поскольку жесткость ригеля значительно больше жесткости колонны, поворотом верхнего конца колонны можно пренебречь. Считается, что колонна имеет верхний конец, закрепленный только от поворота.

Степень упругого закрепления колонн зависит от относительной жесткости колонн рамы на сдвиг и влияет только на величину неизвестной Я. Величина неизвестного момента вследствие бесконечной жесткости ригеля зависит только от местной нагрузки, действующей на рассматриваемую колонну.

Амплитуды зтнх колебаний оказываются тем меньше, чем больше жесткость ригелей поперечных рам и основания и чем меньше масса нижней плиты.

Высказанные соображения позволяют всякую многопролетную многоярусную систему при расчете ее на вертикальную нагрузку расчленить на отдельные простые схемы, изображенные на фиг. Концы стоек в этих схемах принимаются или шарнирными или защемленными в зависимости от положения яруса и жесткости ригелей. Наибольшие усилия в ригелях определяются наиневыгоднейшим загружением расчетных схем и расчетом их методом распределения неуравновешенных моментов. Узлы при этом считаются неподвижными.

Рамы представляют собой плоские конструкции, состоящие из прямолинейных, ломаных или криволинейных пролетных элементов, называемых ригелями рамы, н жестко связанных с ними вертикальных или наклонных элементов, называемых стойками рамы. Благодаря жесткому сопряжению ригеля и стоек Е рамных конструкциях по сравнению с аналогичной поперечной рамой в виде фермы или балки, шарнирно опертой на колонны, достигается более эффективное использование металла и значительно повышается жесткость ригеля.

Типы сечения ( а-е сквозных рам.

Сквозные бесшарнирные рамы обладают большей жесткостью, чем двухшарнирные, поэтому высоту ригеля в таких рамах можно уменьшить до / 12 — / 20 пролета. Эффективность сквозных рам повышается при соизмеримости жесткостей стойки и ригеля рамы. В этом случае линейная жесткость стойки ( отношение жесткости к длине элемента) становится больше жесткости ригеля, благодаря чему эффект защемления ригеля возрастает.

trubclub.ru